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INTRODUCTION: Investment in Africa over the
past year with regard to severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2)
sequencing has led to a massive increase in
the number of sequences, which, to date, ex-
ceeds 100,000 sequences generated to track
the pandemic on the continent. These se-
quences have profoundly affected how public
health officials in Africa have navigated the
COVID-19 pandemic.

RATIONALE: We demonstrate how the first
100,000 SARS-CoV-2 sequences from Africa

have helped monitor the epidemic on the conti-
nent, how genomic surveillance expanded
over the course of the pandemic, and how
we adapted our sequencing methods to deal
with an evolving virus. Finally, we also ex-
amine how viral lineages have spread across
the continent in a phylogeographic frame-
work to gain insights into the underlying
temporal and spatial transmission dynam-
ics for several variants of concern (VOCs).

RESULTS:Our results indicate that the number
of countries in Africa that can sequence the

virus within their own borders is growing and
that this is coupled with a shorter turnaround
time from the time of sampling to sequence
submission. Ongoing evolution necessitated
the continual updating of primer sets, and, as
a result, eight primer sets were designed in tan-
dem with viral evolution and used to ensure
effective sequencing of the virus. The pandemic
unfolded through multiple waves of infection
thatwere eachdrivenby distinct genetic lineages,
with B.1-like ancestral strains associated with
the first pandemic wave of infections in 2020.
Successive waves on the continent were fueled
by different VOCs, with Alpha and Beta cocir-
culating in distinct spatial patterns during the
second wave and Delta and Omicron affecting
the whole continent during the third and fourth
waves, respectively. Phylogeographic reconstruc-
tion points toward distinct differences in viral
importation and exportation patterns associ-
ated with the Alpha, Beta, Delta, and Omicron
variants and subvariants, when considering
bothAfrica versus the rest of theworld and viral
dissemination within the continent. Our epide-
miological and phylogenetic inferences there-
fore underscore the heterogeneous nature of
the pandemic on the continent and highlight
key insights and challenges, for instance, rec-
ognizing the limitations of low testing pro-
portions. We also highlight the early warning
capacity that genomic surveillance in Africa
has had for the rest of the world with the de-
tection of new lineages and variants, the most
recent being the characterization of various
Omicron subvariants.

CONCLUSION: Sustained investment for diag-
nostics and genomic surveillance in Africa is
needed as the virus continues to evolve. This
is important not only to help combat SARS-
CoV-2 on the continent but also because it can
be used as a platform to help address themany
emerging and reemerging infectious disease
threats in Africa. In particular, capacity build-
ing for local sequencing within countries or
within the continent should be prioritized
because this is generally associated with
shorter turnaround times, providing the most
benefit to local public health authorities
tasked with pandemic response and mitiga-
tion and allowing for the fastest reaction to
localized outbreaks. These investments are
crucial for pandemic preparedness and re-
sponse and will serve the health of the con-
tinent well into the 21st century.▪
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Expanse of SARS-CoV-2 sequencing capacity in Africa. (A) African countries (shaded in gray) and
institutions (red circles) with on-site sequencing facilities that are capable of producing SARS-CoV-2 whole
genomes locally. (B) The number of SARS-CoV-2 genomes produced per country and the proportion of
those genomes that were produced locally, regionally within Africa, or abroad. (C) Decreased turnaround time
of sequencing output in Africa to an almost real-time release of genomic data.
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Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa
over the past year has led to a major increase in the number of sequences that have been generated
and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes.
Our results show an increase in the number of African countries that are able to sequence domestically and
highlight that local sequencing enables faster turnaround times and more-regular routine surveillance.
Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the
heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern—
particularly Alpha, Beta, Delta, and Omicron—on the continent. Sustained investment for diagnostics
and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces
many emerging and reemerging infectious disease threats. These investments are crucial for pandemic
preparedness and response and will serve the health of the continent well into the 21st century.

W
hat originally started as a small cluster
of pneumonia cases in Wuhan, China,
more than2years ago (1) quickly turned
into a global pandemic. COVID-19 is the
clinical manifestation of severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2)
infection, and by March 2022, there had been
more than 437million reported cases andmore
than 5.9 million reported deaths (2). Although
Africa accounts for the lowest number of re-
ported cases and deaths thus far, with ~11.3 mil-
lion reported cases and 245,000 reported deaths
as of February 2022, the continent has played
an important role in shaping the scientific re-
sponse to thepandemicwith the implementation
of genomic surveillance and the identification of
two of the five variants of concern (VOCs) (3, 4).
Since it emerged in 2019, SARS-CoV-2 has

continued to evolve and adapt (5). This has led
to the emergence of several viral lineages that
carry mutations that either confer some viral
adaptive advantages that increase transmis-
sion and infection (6, 7) or counter the effect
of neutralizing antibodies from vaccination
(8) or previous infections (9–11). The World
Health Organization (WHO) classifies certain
viral lineages as VOCs or variants of interest
(VOIs) based on the potential impact theymay
have on the pandemic, with VOCs regarded as
the highest risk. To date, five VOCs have been
classified by the WHO; of these, two were first
detected on the African continent (Beta and
Omicron) (3, 4, 12) and two (Alpha and Delta)
(12, 13) have spread extensively on the conti-
nent in successive waves. The remaining VOC,
Gamma (14), originated in Brazil and had a lim-
ited influence in Africa, with only four recorded
sequenced cases.
For genomic surveillance to be useful for

public health responses, sampling for sequenc-

ing needs to be both spatially and temporally
representative. In the case of SARS-CoV-2 in
Africa, this means extending the geographic
coverage of sequencing capacity to capture the
dynamic genomic epidemiology in as many
locations as possible. In a meta-analysis of the
first 10,000 SARS-CoV-2 sequences generated
in 2020 fromAfrica (15), several blind spotswere
identified with regard to genomic surveillance
on the continent. Since then, much investment
has been devoted to building capacity for ge-
nomic surveillance inAfrica, coordinatedmostly
by the Africa Centers for Disease Control (Africa
CDC) and the regional office of the WHO in
Africa (or WHO AFRO) but also provided by
several national and international partners,
resulting in an additional 90,000 sequences
shared over the past year (April 2021 toMarch
2022). This makes the sequencing effort for
SARS-CoV-2 a phenomenalmilestone. In com-
parison, only 12,000 whole-genome influenza
sequences (16) and only ~3700 whole-genome
HIV sequences (17) fromAfrica have been shared
publicly, even though HIV has plagued the con-
tinent for decades.
Here,wedescribehow the first 100,000SARS-

CoV-2 sequences from Africa have helped de-
scribe the pandemic on the continent, how this
genomic surveillance in Africa has expanded,
and how we adapted our sequencing meth-
ods to deal with an evolving virus. We also
highlight the impact that genomic sequencing
in Africa has had on the global public health
response, particularly through the identifica-
tion and early analysis of new variants. Finally,
wealsodescribeherehowtheDelta andOmicron
variants have spread across the continent and
how their transmission dynamics were dis-
tinct from the Alpha and Beta variants that
preceded them.

Results
Epidemic waves driven by variant dynamics
and geography
Scaling up sequencing in Africa has provided a
wealth of information on how the pandemic
unfolded on the continent. The epidemic has
largely been spatially heterogeneous across
Africa, but most countries have experienced
multiple waves of infection (18–29), with sub-
stantial local and regional diversity in the first
wave and to a lesser extent in the secondwave,
followed by successive sweeps of the continent
with Delta and Omicron (Fig. 1A). In all re-
gions of the continent, different lineages and
VOIs evolved and cocirculated with VOCs and,
in some cases, contributed considerably to epi-
demic waves.
In North Africa (Fig. 1B and fig. S1A), B.1

lineages and Alpha dominated in the first and
second waves of the pandemic and were re-
placed by Delta and Omicron in the third and
fourth waves, respectively. Interestingly, the
C.36 and C.36.3 sublineages dominated the
epidemic inEgypt (~40%of reported infections)
before July 2021 when they were replaced by
Delta (30). Similarly, in Tunisia, the first and
second waves were associated with the B.1.160
lineage and were replaced by Delta during the
country’s third wave of infections. In southern
Africa (Fig. 1C and fig. S1C), we see a similar
pandemic profile, with B.1 dominating the
first wave; however, instead of Alpha, Betawas
responsible for the second wave, followed by
Delta and Omicron. Another lineage that was
flagged for close monitoring in the region was
C.1.2 because of its mutational profile and pre-
dicted capacity for immune escape (31). However,
the C.1.2 lineage did not causemany infections
in the regionbecause itwas circulating at a time
when Delta was dominant. In West Africa (Fig.
1D and fig. S1B), the B.1.525 lineage caused a
large proportion of infections in the second
and third waves, where it shared the pandemic
landscapewith theAlpha variant. Aswith other
regions on the continent, these variants were
later replacedby theDelta and then theOmicron
VOCs in successive waves. In Central Africa
(Fig. 1E and fig. S1D), the B.1.620 lineage caused
most of the infections between January and
June 2021 (32) before systematically being
replaced by Delta and then Omicron. Lastly,
in East Africa (Fig. 1F and fig. S1E), the A.23.1
lineage dominated the second wave of infec-
tions in Uganda (33) and much of East Africa.
In all of these regions, minor lineages such as
B.1.525, C.36, and A.23.1 were eventually re-
placed by VOCs that emerged in later waves.
Finally, we directly compared the official

recorded cases in Africa with the ongoing SARS-
CoV-2 genomic surveillance data (GISAID date
of access: 31March 2022) for a crude estimation
of the variants’ contributions to cases. We ob-
serve that Delta was responsible for an epi-
demic wave between May and October 2021
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(Fig. 1A) and had the greatest impact on the
continent, with almost 34.2% of overall in-
fections in Africa possibly attributed to it.
Beta was responsible for an epidemic wave at
the end of 2020 and beginning of 2021 (Fig.
1A), with 13.3% of infections overall attributed
to it. Notably, Alpha, despite being predomi-
nant in other parts of the world at the begin-
ning of 2021, had only minimal importance in
Africa, accounting for just 4.3% of infections.
At the time of writing, the Omicron VOC had
contributed to 21.6% of the overall number of
sequenced infections. At this time, the Omicron
wave was still unfolding globally and in Africa
with the expansion of several sublineages (34),
such that its full impact is yet to be determined.
However, because of increased population im-
munity (35) from SARS-CoV-2 infection and
vaccination (fig. S2), the impact of Omicron on
mortality has been less in comparison to the
otherVOCs, as can be observed by the relatively
low death rate in South Africa during the
Omicronwave (36). The findings frommapping
epidemiological numbers onto genomic sur-

veillance data are reliable as far as the pro-
portional scaling of genomic sampling across
Africa with the size and timing of epidemic
waves [fig. S3; model estimate (b) = 0.011,
standard error (SE) = 0.001, p < 2 × 10−16].
This comes with the obvious caveats that

testing and reporting practices have varied
widely across the continent along with ge-
nomic surveillance volumes throughout the
pandemic. Countries in Africa with reported
data have tested in proportions from as little as
0.1 daily tests per million population to more
than 1000 tests per million (fig. S4). Some coun-
tries have consistently tested at high proportions,
for example, South Africa, Botswana,Morocco,
and Tunisia. Incidentally, these countries have
also generally reported more cases per million
population,providingan indication that recorded
low incidences in other parts of the continent
have been underestimates due to low testing
rates. However, even for these countries, epi-
demic numbers are certainly underrepresented
and underdetected, given that in several time
frames, test positivity rates were still on the

higher end, approaching or exceeding 20% (fig.
S4), and as concluded by seroprevalence sur-
veys and estimates of true infection burdens in
Africa (37, 38). Findings of attributing case
numbers of variants must therefore be inter-
preted in the context of this limitation but can
nevertheless provide a qualitative overview of
the spatial and temporal dynamics of VOCs in
relation to epidemic progression in Africa.
The African regional (table S1) and country-

specific (table S2) NextStrain builds also clearly
support the changing nature of the pandemic
over time. From these builds,we observe a strong
association of B.1-like viruses circulating on the
continent during the first wave. These “ances-
tral” lineages were subsequently replaced by the
Alpha and Beta variants, which dominated the
pandemic landscape during the second wave
andwere later replacedby theDelta andOmicron
variants during the third and fourth waves.

Optimizing surveillance coverage in Africa

Bymapping and comparing the locations of spec-
imen sampling laboratories to the sequencing
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Fig. 1. Epidemiological progression of the COVID-19 pandemic on the
African continent. (A) Total reported new case counts per million inhabitants
in Africa (data source: Our World in Data; log-transformed) along with
the distribution of VOCs, the Eta VOI, and other lineages through time (the
size of each circle is proportional to the number of genomes sampled per
month for each category). (B to F) Breakdown of reported new cases

per million (data source: Our World in Data; log-transformed) and monthly
sampling of VOCs, regional variant, or lineage of interest and other
lineages for three selected countries for North, southern, West, Central,
and East Africa, respectively. For each region, a different variant or lineage
of interest is shown, relevant to that region (C.36, C.1.2, Eta, B.1.620, and
A.23.1, respectively).
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laboratories, a number of aspects regarding
the expansion of genomic surveillance on the
continent became clear. First, even though
several countries in Africa started sequencing
SARS-CoV-2 in the first months of the pan-
demic, local sequencing capacity was initially
limited. However, local sequencing capabil-

ities slowly expanded over time, particularly
after the emergence of VOCs (Fig. 2A). The fact
that almost half of all SARS-CoV-2 sequenc-
ing in Africa was performed using the Oxford
Nanopore Technology (ONT), which is rela-
tively low-cost compared with other sequenc-
ing technologies and better adapted tomodest

laboratory infrastructures, illustrates one com-
ponent of how this rapid scale-up of local
sequencing was achieved (fig. S5). Yet, to rely
only on local sequencing would have thwarted
the continent’s chance at a reliable genomic
surveillance program. At the time of writing,
52 of 55 countries in Africa had SARS-CoV-2
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Fig. 2. Sequencing strategies and outputs in Africa. (A) Geographical
representation of all countries (shaded in gray) and institutions (red dots) in
Africa with their own on-site sequencing facilities. The inset graph shows
the number of countries in Africa that are able to carry out sequencing locally
over time. (B) Key regional sequencing hubs and networks in Africa showing
countries (shaded in bright colors) and institutions (red dots) that have
sequenced for other countries (shaded in corresponding light colors and linking
curves) on the continent. ACEGID, African Centre of Excellence for Genomics
of Infectious Diseases; CERI, Centre for Epidemic Response and Innovation;
KEMRI-WT, Kenya Medical Research Institute–Wellcome Trust; KRISP, KwaZulu-
Natal Research Innovation and Sequencing Platform; ILRI, International
Livestock Research Institute; INRB, Institut National de Recherche Biomédicale;
IPD, Institut Pasteur de Dakar; MRC/UVRI, Medical Research Council/Uganda
Virus Research Institute; MRCG, Medical Research Council Unit–The Gambia;
NICD, National Institute for Communicable Diseases; NMIMR, Noguchi Memorial

Institute for Medical Research. (C) Geographical representation of the total
number of SARS-CoV-2 whole genomes produced over the course of the
pandemic in each country, as well as the proportion of those sequences that
were produced locally, regionally, or abroad. (D) Correlation of the proportion of
COVID-19 positive cases that have been sequenced and the corresponding
number of epidemiological weeks since the start of the pandemic that are
represented with genomes for each African country. The color of each circle
represents the number of cases and its size the number of genomes.
(E) Comparison of sequencing turnaround times (lag times from sample
collection to sequence submission) for the three strategies of sequencing in
Africa, showing a significant difference in the means (****p < 0.0001). The box
and whisker plot denotes the lower quartile, the median and upper quartiles
(box), the minimum and maximum values (whiskers), and the outliers
(black dots). (F) Pearson correlations of the total number of sequencing
laboratories per country against key sequencing outputs.
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genomes deposited in GISAID; however, there
were still 16 countries with no reported local
sequencing capacity (Fig. 2A) and undoubtedly
many with limited capacity to meet demand
during pandemic waves.
To tackle this, three centers of excellence

and various regional sequencing hubs were
established to maximize the resources avail-
able in a few countries to assist in genomic
surveillance across the continent. This se-
quencing is done either as the sole source of
viral genomes for those countries (e.g., Angola,
South Sudan, and Namibia) or concurrently
with local efforts to increase capacity during
resurgences (Fig. 2B). Sequencing is further
supplemented by a number of countries that
use facilities outside of Africa. Ultimately, a
mix of strategies from local sequencing, col-
laborative resource sharing among African
countries, and sequencing with academic col-
laborators outside the continent helped close
surveillance blind spots (Fig. 2C). Countries in
sub-Saharan Africa, particularly in southern
and East Africa, most benefited from the re-
gional sequencing networks, whereas coun-
tries inWest and North Africa often partnered
with collaborators outside of Africa.
The success of pathogen genomic surveil-

lance programs relies on how representative
it is of the epidemic under investigation. For
SARS-CoV-2, this is often measured in terms
of the percentage of reported cases sequenced
and the regularity of sampling. African coun-
tries were positioned across a range of differ-
ent combinations of overall proportion and
frequency of genomic sampling (Fig. 2D). Al-
though the ultimate goal would be to optimize
both of these parameters, a lower proportion
of sampling can also be useful if the frequency
of sampling is maintained at as high a level as
possible. For instance, South Africa andNigeria,
which have both sequenced ~1% of cases over-
all, can be considered to have successful ge-
nomic surveillance programs based on the fact
that sampling is representative over time and
has enabled the timely detection of variants
(Beta, Eta, Omicron).
Additionally, for genomic surveillance to be

most useful for rapid public health response
during a pandemic, sequencing would ideally
be done in real time or in a framework as close
as possible to that. We show a general trend of
decreasing sequencing turnaround time in
Africa (fig. S6), particularly from a mean of
182 days between October and December 2020
to a mean of 50 days over the same period a
year later, although this does comewith several
caveats. First, we measure sequencing turn-
around time in the most accessible manner,
which is by comparing the date of sampling of
a specimen to the date its sequence was de-
posited in GISAID. Generally, the genomic data
potentially informs the public health response
more rapidly than reflected here, particularly

when it comes to local outbreak investigations
or variant detection. This analysis is also con-
founded by various factors such as country-
to-country variation in these trends (fig. S7),
delays in data sharing, and potential retro-
spective sequencing, particularly by countries
that joined sequencing efforts at later stages
of the pandemic. The most critical caveat is
the fact that sequencing from themost recently
collected samples (e.g., over the past 6 months)
may still be ongoing. The shortening duration
between sampling and genomic data sharing
is nevertheless a positive takeaway, given that
these data also feed into continental and global
genomic monitoring networks. Overall, the con-
tinental average delay from specimen collec-
tion to sequencing submission is 87 days, with
10 countries having an average turnaround
time of less than 60 days and Botswana of less
than 30 days (fig. S8).
Most importantly, in the context of optimiz-

ing genomic surveillance, we found that the
route taken to sequencing affects the speed of
data generation. Of the three frameworks we
investigated, local sequencing has statistically
faster sequencing turnaround times (median
of 51 days), followed by sequencing within re-
gional sequencing networks in Africa (median
of 93 days) and finally outsourced sequencing
to countries outside Africa (median of 113 days)
(Fig. 2E). This finding strongly supports the
investments in local genomic surveillance to
generate timely and regular data for local and
regional decision-making. Finally, we show
that it is beneficial in several ways for coun-
tries to undertake genomic surveillance through
several sequencing laboratories rather than
by centralizing efforts. For instance, we esti-
mate strong correlations between the numbers
of sequencing laboratories per country and the
total number of genomes produced by that
country (Pearson correlation, 0.75), the total
number of epiweeks for which sequencing data
was produced (Pearson correlation, 0.81), and,
importantly, sequencing turnaround time
(Pearson correlation, −0.37) (Fig. 2F).
With the increase in sequencing capacity on

the continent, a decrease in the time taken to
detect new variants was observed. For exam-
ple, the Beta variant was identified in Decem-
ber 2020 in South Africa (4), but sampling and
molecular clock analyses suggest that the var-
iant originated inSeptember 2020. This 3-month
lag in detection means that a new variant, like
Beta, has ample time to spread over a large
geographic region before its detection. How-
ever, by the end of 2021, the time to detect a
new variant was substantially improved. Phy-
logenetic andmolecular clock analyses suggest
that the Omicron variant originated around 9
October 2021 (95% highest posterior density:
30 September to 20 October 2021), and the
variant was described on 23 November 2021
(3). Thus,Omicronwasdetectedwithin~5weeks

from origin compared with the Beta variant
(~16 weeks) and the Alpha variant, which was
detected in the United Kingdom (~10 weeks).
More importantly, the time from sequence dep-
osition to the WHO declaring the new variant
a VOCwas substantially shortened to 72 hours
for the Omicron variant.
To interpret insights from the described ge-

nomic surveillance in Africa, it is important
to understand the context of epidemiological
reporting and sampling strategies used for
sequencing on the continent (table S3). Most
countries provided daily reports of newly
recorded cases, whereas a fewprovidedweekly
and monthly reports. For most countries, sur-
veillance was mainly focused on the major
cities, suggesting potential cryptic circulation
in rural areas. We find that at the onset of the
pandemic, surveillance was focused on identi-
fication of imported cases from incoming trav-
elers or local residents returning from various
countries. As community transmissions began
to emerge, the focus shifted toward regular sur-
veillance and outbreak investigations. Together,
these three strategies account for the vast ma-
jority of samples generated on the continent
and analyzed here. As the pandemic progressed
and vaccines were made available, some coun-
tries on the continent began to explore other
sampling strategies such as reinfections, en-
vironmental samples such as wastewater sam-
ples, and vaccine breakthrough cases to gain
new insights into the evolutionary dynamics
of SARS-CoV-2. The utility of sequencing for
viral evolution tracking and VOC detection in
the way described above is obviously also de-
pendent on sampling proportions, especially
within sampling for regular surveillance.
The speed of SARS-CoV-2 evolution has com-

plicated sequencing efforts. Common methods
of RNA sequencing include reverse transcrip-
tion followed by double-stranded DNA ampli-
fication using sequence-specific primer sets
(39). Ongoing SARS-CoV-2 evolution has neces-
sitated the continual evaluation and updating
of these primer sets to ensure their sustained
utility during genomic surveillance efforts. Here,
we examined the current set of genomes to
determine aspects of the sequencing process
that might be improved in the future. Many of
the primer sets that were used were designed
using viral sequences from the start of the pan-
demic and may require updating to keep pace
with evolution. Indeed, the ARTIC primer sets
are now in version 4.1 (40). The Entebbe primer
set was designed mid-2020, well into the first
year of the epidemic, and used an algorithm
and design that accommodates evolution (41).
The effects of viral evolution on sequencing

patterns can be seen with lowmedian unspec-
ified nucleotide (N) values (a consequence of
primer dropout or low coverage at that site) that
were observed for the first 12 months of the
epidemic, with an increase fromOctober 2020

Tegally et al., Science 378, eabq5358 (2022) 7 October 2022 4 of 15

RESEARCH | RESEARCH ARTICLE
D

ow
nloaded from

 https://w
w

w
.science.org on January 22, 2025



(Fig. 3A). Additional challenges appear (as in-
dicated by increasing median N values) as
the virus further evolved into the Delta and
Omicron lineages from January 2021 onward
(Fig. 3A). By examining the role of sequenc-
ing technology, it appears that the twomajor
technologies used (Illumina and ONT) have
similar gap profiles (as measured by mean N
count per genome), whereas Ion Torrent, MGI,
and Sanger show a reduced mean N count per
genome (Fig. 3B). Likely factors for this pat-
tern are the primers used in sequencing, with
primer choice playing a key role in the quantity
of gaps (Fig. 3C). The mean N count per ge-
nome varied with viral lineage (Fig. 3D). There
was a modest difference in mean N count per
genome across the lineages. Lineages that re-
turned no classification with Pangolin (“none”)
showed the highest mean N count, suggesting
that high mean N count per genome was prob-
ably the basis for failed classification. Themore
recent lineages, Delta (e.g., AY.39, AY.75) and
Omicron (BA.1.1, BA.2), also showed higher
mean N count per genome, consistent with vi-
rus evolution impairing primer function. This
pattern is further explored in fig. S9, where the
position of gaps shows an enrichment in the
genome regions after position 19,000, with fre-
quent gaps disrupting the spike coding region.

Phylogenetic insights into the rise and spread
of VOCs in Africa

During the first wave of infections in 2020 in
Africa, as was the case globally, most correspond-
ing genomes were classified as PANGO B.1 (n =
2456) or B.1.1 viruses (n = 1329). Toward the
end of 2020,more-distinct viral lineages started
to appear. Of these, the most important ones
that affected the African continent are B.1.525
(n = 797), B.1.1.318 (n = 398) (42), B.1.1.418 (n =
395), A.23.1 (n = 358) (15, 29, 31, 33), C.1 (n =
446) (29), C.1.2 (n = 300) (31), C.36 (n = 305)
(30, 43), B.1.1.54 (n = 287) (15, 29, 31, 33),
B.1.416 (n = 272), B.1.177 (n = 203), B.1.620 (n =
138), and B.1.160 (n = 61) (32) (fig. S10, A and
B). Our discrete state phylogeographic infer-
ence from phylogenetic reconstruction of non-
VOC African sequences and an equal number
of external references revealed that African
countries were primarily seeded by multiple
introductions of viral lineages from abroad
(mainly Europe) at the beginning of the pan-
demic. The observed pattern of non-VOC viral
lineage movement then consistently shifted
toward more intercontinental exchanges (fig.
S10C). Mapping out the spatial routes of dis-
semination shows that various countries in all
subregions of the continent acted as sources
of these viral lineages at one point or another
(fig. S10D). Although uneven testing rates and
proportions of samples sequenced on the con-
tinentmayhave influenced these inferences (dis-
cussed later), the results presented here are in
line with the fact that these most predominant

Tegally et al., Science 378, eabq5358 (2022) 7 October 2022 5 of 15

A

B

D

C

Fig. 3. Genome gap analysis. (A) The mean N count per genome by month of submission to GISAID. The
time periods corresponding to the detection of important SARS-CoV-2 lineages are indicated at the
top of the figure. (B) Illustration of the mean N count per genome stratified by sequencing technology.
(C) The mean N count per genome stratified by the sequencing primers sets used. (D) Mean N count
per genome by lineage. The mean N data were stratified by SARS-CoV-2 lineages to investigate the
lineage-specific frequency of genome gaps, an indirect measure of primer mismatch. All lineages that were
present at least 100 times in the genome data are presented. For (A) to (D), error bars indicate 95%
confidence intervals.
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non-VOC lineages in Africa, except B.1.177,
emerged and circulated widely in different
subregions (Fig. 1).
Similar to the pandemic globally, VOCs be-

came increasingly important in Africa toward
the end of 2020. The Alpha, Beta, Delta, and
Omicron variants demonstrate many similar-
ities as well as differences in the way that they
spread on the continent. For all these VOCs,
we observe large regional monophyletic trans-
mission clusters in each of their phylogenetic
reconstructions in Africa (fig. S11). This sug-
gests an important extent of continental dis-
semination within Africa. Alpha and Beta were
epidemiologically important in distinct re-
gions of the continent, with Alpha primarily
circulating in West Africa, North Africa, and
most of Central Africa; Beta circulating in
southern and most of East Africa; and both
only substantially cocirculating in a few coun-
tries such as Angola, Kenya, Comoros, Burundi,
and Ghana (Fig. 1 and fig. S12). However, we
may not have enough resolution in the geo-
spatial data to know whether and to what ex-
tent they were truly cocirculating throughout
these countries or whether there were regional
outbreaks of Alpha andBetawithin these coun-
tries. In Kenya, for example, Beta was detected

more frequently in coastal regions and Alpha
more frequently inland (26, 44). By contrast,
the Delta and Omicron variants sequentially
dominated most infections on the entire con-
tinent shortly after their emergence (Fig. 4A
and fig. S12).
The Alpha variant was first identified in

December 2020 in the United Kingdom and
has since spread globally. In Africa, Alpha was
detected in 43 countries, with evidence of com-
munity transmission based on phylogenetic
clustering in many countries, including Ghana,
Nigeria, Kenya, Gabon, and Angola (fig. S11).
Discrete state maximum likelihood reconstruc-
tion from a globally case-sensitive genomic sub-
sampling inferred at least 80 introductions
[95% confidence interval (CI): 78 to 82] into
Africa, with the bulk of imports attributed to the
United States (>47%) and the United Kingdom
(>25%) (Fig. 4B). Only 1% of imports into any
particular African country were attributed to
another African nation. Phylogeographic re-
construction enriched in African sequences
revealed that of those, >85% of the intercon-
tinental Alpha exchanges in Africa originated
from West African countries (Fig. 4C). This
occurred in spite of initial importations of the
Alpha variant from Europe into all regions of

the continent (fig. S13B) but is in line with
Alpha having dominated circulation mostly in
West Africa (fig. S12). In countries where Alpha
was introduced but did not grow and cause an
expansion of cases, this can be explained by
competition with the already established Beta
variant, which simultaneously circulated. The
characteristics of multiple introductions of
Alpha into Africa and between African coun-
tries is similar to the spread of Alpha that has
been documented in the United Kingdom,
Scotland, and Ireland (45–47).
The second VOC, Beta, was identified in

December 2020 in South Africa (4). However,
sampling and molecular clock analyses suggest
that the variant originated around September
2020 (fig. S11). At the end of 2020 and be-
ginning of 2021, Beta was driving a second
wave of infection in South Africa and quickly
spread to other countries within the region.
The concurrent introductions and spread of
Alpha and other variants (Eta, A.23.1) in other
regions of the continent may have reduced
the Beta variant’s initial growth, limiting its
spread largely to southern Africa and, to a
lesser extent, the East Africa region. Beta spread
to at least 114 countries globally, including
37 countries and territories in Africa. For this
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Fig. 4. Inferred viral dissemination patterns of VOCs within Africa. (A) Genomic
prevalence of VOCs Alpha, Beta, Delta, and Omicron in Africa over time. (B) Inferred
viral exchange patterns to, from, and within the continent of Africa for the four
VOCs (Omicron as BA.1 and BA.2) based on case-sensitive phylogeographic
inference. Introductions and viral transitions within Africa are shown as solid lines,
and exports from Africa are shown as dotted lines; the lines are colored by continent.

The shaded areas around the lines represent the uncertainty of this analysis from
10 replicates (±SD). (C) Dissemination patterns of the VOCs within Africa
obtained from inferred ancestral-state reconstructions performed on Africa-
enriched datasets, annotated and colored by region in Africa. The countries of
origin of viral exchange routes are also shown with dots, and the curves go from
country of origin to destination country in a counterclockwise direction.
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variant, viral circulation and geographical ex-
changes occurred predominantly within the
continent. Indeed, phylogeographic recon-
struction from a globally case-sensitive sam-
pling revealed that of the 810 (95% CI: 803 to
818) inferred introductions of the Beta var-
iant into African countries, only 110 (95% CI:
105 to 115; 13%) were attributed to sources
outside the continent (fig. S13C), whereas
more than half of the introductions were at-
tributed to South Africa (63%) (Fig. 4C). This
is in linewith expectations because the variant
originated in South Africa. Beyond southern
Africa, most of the introductions back into the
continent were attributed to France and other
European Union countries into the French
overseas territories, Mayotte and Reunion, and
other Francophone African countries. Africa-
focused phylogeographic analysis revealed a
similar spatial pattern that showed southern
countries as substantial sources of the variant,
followed in small numbers by countries in
East Africa (Fig. 4C).
The fourth VOC observed was Delta (13),

which rose to prominence inApril 2021 in India,
where it fueled an explosive secondwave. Since
its emergence, Delta has been detected in >170
countries, including 37 African countries and
territories (fig. S11). Our global case-sensitive
subsampled analysis infers at least 100 (95%CI:
93 to 106) introductions of the Delta variant
into Africa, with the bulk attributed to India
(~72%), mainland Europe (~8%), the United
Kingdom (~5%), and the United States (~2.5%).
Viral introductions of Delta also occurred from
one African country to others in 7% of inferred
introductions. From our Africa-focused phylo-
geographic inferences, we infer that unlike
Alpha and Beta, viral dissemination of Delta
within Africa was not restricted to or domi-
nated by any particular region but rather spread
across the entire continent (Fig. 4C). After in-
troductions from Asia in the middle of 2021,
Delta rapidly replaced the other circulating
variants (Fig. 4A). For example, in southern
African countries, the Delta variant rapidly dis-
placed Beta and, by June 2021, was circulating
at very high (>90%) frequencies (48).
The latest VOC, Omicron, was identified and

characterized in November 2021 in southern
Africa (3). At the time of writing, the variant
had been detected and caused waves of infec-
tions in >160 countries, including 39 African
countries and two overseas territories (fig. S11).
Because of the genetic distance between them
and their sequential (rather than simultane-
ous) epidemic expansion globally, phylogenies
were reconstructed separately for Omicron
BA.1 and BA.2. Our discrete ancestral-state
reconstruction from a global case-sensitive
sampling for Omicron BA.1 infers at least 55
(95% CI: 47 to 62) viral exports of BA.1 out of
various African countries, of which 31 (95%CI:
25 to 36) were toward Europe and 8 (95% CI:

6 to 10) were toward North America (Fig. 4B).
After explosive expansion of Omicron around
the world, we inferred even more reintroduc-
tions of the variant back into Africa, at least 69
(95%CI: 60 to 78) fromEurope and 102 (95%CI:
92 to 112) from North America (Fig. 4B). From
ourAfrica-focused phylogeographic reconstruc-
tions, we determine that, as with Delta, routes
of dissemination of this variant involved all
regions of the continent spatially (Fig. 4C). Yet
~75% of all BA.1 viral movement volume in
Africa happened between southern African
countries, likely because of rapid epidemic ex-
pansion in the region soon after its detection
(3). Omicron BA.2’s reach in Africa was lim-
ited at the time of writing, with only 3260 se-
quences from 19 countries attributed to BA.2
onGISAID (date of access: 31March 2022) (15%
of all Omicron sequences from Africa). Our
discrete ancestral-state reconstruction from
a global case-sensitive sampling for Omicron
BA.2 infers at least 68 (95% CI: 53 to 84) viral
exports out of African countries, of which most
were toward Europe (~88%) (Fig. 4B). We also
infer at least 99 (95% CI: 87 to 109) separate
introduction or reintroduction events of BA.2
back into African countries, of which ~65% are
from Europe and ~30% from Asia, primarily
from India (Fig. 4B). This is consistent with
India having experienced one of the earliest
large BA.2 waves globally. In the context of
global incidence of BA.2, this case-sensitive
phylogeographic analysis revealed that only
0.01% of viral movements of this lineage glob-
ally happened from one African country to
another. Our Africa-focused analysis inferred a
similar pattern of BA.2 spatial diffusionwithin
African to that of BA.1 (Fig. 4C). However, given
that this accounted for such a small percent-
age of global BA.2 movements, BA.2 diffusion
from one African country to another is unlikely
to have had a substantial impact on epidemi-
ological expansion, compared with introduc-
tions from Asia, Europe, or North America.
Globally, dissemination of the SARS-CoV-2

virus throughout the pandemic was intricately
linked with human mobility patterns (49–53).
To determine the validity of the VOC move-
ment patterns that we infer into andwithin the
Africa continent in this study,we compared viral
import and export events to and from South
Africa with travel to the country. In December
2020, the United Kingdom accounted for the
fifth-highest number of passengers entering
South Africa, whereas other countries with the
top-nine sources of travelers were all neighbor-
ing countries in southern Africa (fig. S14A). Con-
sidering that incidence of the Alpha variant
was not meaningful in the region, this sup-
ports our inference of the United Kingdom
contributing 60% of Alpha introductions to
South Africa (fig. S15A). In March 2021, the
United States, Germany, the United Kingdom,
and India were among the top-12 sources of

travelers to South Africa after eight African
countries (fig. S14B). During this time of Delta
dissemination globally, we infer that ~90% of
introductions of Delta into South Africa orig-
inated in theUnitedKingdom, theUnitedStates,
and India (fig. S15B). At the end of 2021, most
introductions or reintroductions of Omicron
to the country came from the United Kingdom,
the United States, or Botswana, corresponding
to locations of both high Omicron incidence at
the time and high numbers of passengers to
South Africa (figs. S14C and S15C). These travel
patterns also fit the findings that ~89, ~70, and
~75% of Beta, Delta, and Omicron exports, re-
spectively, from South Africa to other African
countries were directed to locations in south-
ern Africa (figs. S14, D and E, and S15, D and E).

Discussion, limitations, and conclusions

By April 2020, a total of 20 African countries
were able to sequence the virus within their
own borders. This was largely made possible
by other preexisting sequencing efforts on the
continent that were focused on other human
pathogens (e.g., HIV, tuberculosis, Ebola, and
H1N1). However, these efforts were quickly
limited by global supply chain issues, and, in
many countries, sequencing efforts substan-
tially sloweddownor stopped toward the end of
2020. To facilitate more sequencing on the con-
tinent over the course of the past year (April 2021
to March 2022), the Africa CDC and partners
investedheavily to support genomic surveillance
on the continent. This included the transfer
of 24 new sequencing platforms (including
MinIon, GridIon, MiSeq, and NextSeq), the dis-
tribution of reagents and flow cells to support
the sequencing of 100,000 positive samples, the
training of >230 students and technicians in
wet laboratory and bioinformatic techniques,
and additional grants to support 10 regional
sequencing hubs. This investment has started
bearing fruit and should be intensified as the
virus continues to evolve, requiring the adap-
tation of methodologies locally on the continent
to keep pacewith the emergence of variants. The
continued development of sequencing proto-
cols in Africa is of crucial importance (41, 54, 55)
given the number of variants and lineages
that emerged in, and were introduced to, the
continent. In North Africa, the SARS-CoV-2
pandemic was caused by waves of infections
that were similar to those seen in Europe (first
wave attributed to B.1 descendants, second
wave to Alpha, third wave to Delta, and fourth
wave to Omicron); in southern Africa, the pat-
tern was similar but with a Beta wave instead
of an Alpha one. In East Africa, the pandemic
was more complex, involving both Alpha and
Beta as well as its own lineage A.23.1 before the
arrival of Delta and Omicron. Central Africa
experienced epidemic patterns that sometimes
mirrored those of East Africa and other times
those of southern Africa. In West Africa, Eta
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made a considerable contribution to both a
secondwave (together with Alpha) and a third
wave (together with Delta). The factors that
resulted in these regional differences are not
clear but could be due to differences in human
mobility, founder effects, competition between
lineages, or the immunity induced by earlier
waves in a region.
Public health benefits of such broadly in-

clusive genomic surveillance are manifold. The
most prominent insight from this expanded
genomic surveillance in Africa has been an
early warning capacity for the world after the
detection of new lineages and variants, most
recently relevant in the detection of Omicron
BA.1, BA.2, BA.3, BA.4, and BA.5 subvariants
(3, 4, 34). Furthermore, the reporting of local
SARS-CoV-2 sequences made the epidemic
more immediate to the Ministries of Health
from the reporting African countries. It be-
came clear early on that the viral evolution is
global and that the transmission of the virus
is extremely rapid, which guided mitigation
strategies. The generation and availability of
local sequences also validated local diagnos-
tics and allowed investigators to determine
whether nucleic acid–based diagnostics that
were in use could still detect local variants.
The detection of SARS-CoV-2 in returning
travelers and truck drivers indicated routes
that the virus might be using to enter a coun-
try and guided early efforts to slow virus entry
and gain time to establish vaccination plans.
Later, the difficulty of stopping the virus at
borders combined with data showing that the
variants were already in community circula-
tion allowed public health officials to focus
efforts and limited resources on vaccination
rather than on border controls. The detection
and reporting of themore-recent lineageswith
enhanced transmission (i.e., Omicron) and the
ability to bypass existing immunity is impor-
tant information and an early alert to public
health officials globally that the epidemic is
still proceeding. As the pandemic progresses
in an evolving global context, we provide evi-
dence that with each new variant, transmis-
sion dynamics are changing and the use of
sequencing with phylogenetics could poten-
tially alter decisions of public healthmeasures.
For example, the demonstrated shift away from
regional dynamics of Alpha and Beta toward
more global patterns with Delta and Omicron
can provide insights to public health officials
as they anticipate epidemic developments lo-
cally. With Omicron, it became clear that al-
though the variant expanded first in Africa,
the continent ultimately had a minimal role
in global dissemination and that continental
expansion beyond southern Africa was most
influenced by external introductions, in con-
trast to the Beta variant. All of these public
health benefits to sequencing SARS-CoV-2 are
primarily amplified, as we show in this study,

if the sequencing can be conducted locally
within a country, which strongly supports the
continued investment into pathogen sequenc-
ing on the continent.
Despite the recent successful expansion of

genomics surveillance inAfrica, additionalwork
is necessary. Even with investments from the
AfricaCDC–AfricaPathogenGenomics Initiative
and other investments, there are still 16 coun-
tries with no sequencing capacity within their
own borders. The only option for these coun-
tries is to send samples to continental sequenc-
ing hubs or to centers outside of the continent,
which increases turnaround times and limits
the utility of genomic surveillance for public
health decision-making. Secondly, not all coun-
tries are willing to share data openly in a timely
fashion for fear of being subject to travel bans
or restrictions that could bring substantial eco-
nomic harm. Such hesitancy has obvious po-
tential ramifications for the future of genomic
surveillance on the continent. Furthermore,
with the expansion of sequencing on the con-
tinent, there is a growing need for more bio-
informatics support and knowledge to allow
investigators to analyze and report their data
in a reasonable time frame that makes it use-
ful for a public health response. It is also clear
that the SARS-CoV-2 sequencing primers are
not a static development and may require up-
dating as the virus evolves. A number of research
groups have been addressing the SARS-CoV-2
sequencing primer questions. Issues of gaps in
the genomes due to missing amplicons have
been discussed (56, 57). The ARTIC primer set
has gone through a number of revisions to ac-
commodate virus evolution (39, 40). Additional
longer amplicon methods have been published
(58–60), including methods to use a subset of
ARTIC primers (61).
The patterns we describe here are of course

limited to reported cases and apply to both the
phylogeographic as well as the epidemiology
inferences. As such, the results need to be in-
terpreted with these limitations in mind. Our
primary phylogeographic inference relied on a
sampling strategy that considered all high-
quality African sequences and an equal number
of external references. Though this strategy has
the advantage of placing all African sequences
in a phylogenetic context, it introduces a bias
when applied to discrete ancestral-state recon-
struction because more internal nodes are in-
ferred to be from Africa. To address this, we
performed an even sampling of global cases,
based on reported case counts through time, to
compare against our oversampled inference.
The even-sampling approach has the benefit
that the discrete ancestral-state reconstruc-
tion is not biased by uneven sampling. After
comparing the two, there are obvious differ-
ences, most notably that the number of inferred
introductions into Africa is proportional to
sampling proportions (fig. S16) because we no

longer consider all African sequences but rather
just a small subset against a global sample.
However, inferences from the two approaches
correspond well with one another. For exam-
ple, considering Alpha, we still observed that
the vast majority of introductions into Africa
originated fromWestern Europe. Patterns of
dissemination within Africa are more robustly
comparable between the two, for instance, that
countries inWest Africa were the biggest source
of Alpha within the continent. High concor-
dance between the two inferencemethodswas
also observed for otherVOCs for dispersal routes
within Africa, which gives us confidence in the
inferred patterns we observe here. Although we
represent an inference based on oversampling
and case-sensitive sampling, it is, at present, not
possible to explore how undersampling affects
the phylogeographic reconstruction because of
uneven testing rates. Additionally, the robust-
ness of the phylogeographic inference can also
be affected by the underlying methodology
that is used. Broad consensus would favor the
use of Bayesian methods for phylogeographic
reconstruction, which is often considered to
be the “gold standard” in the field. The main
drawbacks of Bayesian methods are that they
can only be applied to a relatively small num-
ber of sequences at a time (<1000) and they
are extremely computationally and time inten-
sive. Given the explosion of sequence data over
the past 2 years, the scientific community will
have to adapt or put forth new analytical meth-
ods to fully capitalize on the global sequencing
efforts for SARS-CoV-2.
Despite our best attempts to consider and

minimize genomic sampling bias, the accuracy
of the resulting phylogenetic inferences is lim-
ited by the available epidemiological and ge-
nomic data, leading to unaccounted biases in
the estimates of viralmovements. This includes
limited testing and subsequent sequencing
in many African countries. Although the per-
centage of reported cases sequenced in African
countries (0.01 to 10%,mean= 1.27%) is not far
from global figures (0.01 to 16%, mean = 1.31%),
testing rates and infection-to-detection ra-
tios in Africa were some of the lowest globally
(38, 62). Together with estimates of excessmor-
tality being as much as 20-fold greater than the
reported numbers in African countries (63),
these are strong indications of undetected and
underreported epidemic sizes in Africa, lead-
ing to undersampling of genomic data (62)
and thus underestimates of viral exchange
inferences in our study. Some countries with
no publicly available SARS-CoV-2 sequences
are, by definition, completely missing in our
inference. This in turn means that inferred
routes of viral transmission within Africa could
be missing important intermediate locations,
although this is potentially true around the
world. Nevertheless, we believe that the viral
movement inferences that we discuss in this
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study provide a likely qualitative description
of the patterns of SARS-CoV-2 migration into,
out of, and within Africa.
Finally, we should also mention uneven se-

quencing and reporting standards across the
different laboratories on the continent—and
globally, for that matter. Different groups use
different measures for what constitutes a high-
quality sequence (e.g., 70 versus 80% sequence
coverage) or use different sequencing depth
coverage. This lack of global standardization
complicates the direct comparison of sequences
thatmay have been submitted to GISIAD using
different criteria, further biasing any inference.
Given the sheer size of SARS-CoV-2 sequenc-
ing, with ~10million whole-genome sequences
shared on the GISAID database (date of access:
31 March 2022), there is an urgent need for
global standards with regard to sequence qual-
ity and associated metadata.
Africa needs to continue expanding genomic

sequencing technologies on the continent in
conjunction with diagnostic capabilities. This
holds true not just for SARS-CoV-2 but also for
other emerging or reemerging pathogens on
the continent. For example, in February 2022,
the WHO announced the reemergence of wild
polio in Africa, and sporadic influenza H1N1,
measles, andEbola outbreaks continue to occur
on the continent. The Africa CDChas estimated
that more than 100 pathogen outbreaks are
reported across the continent every year. Be-
yond the current pandemic, continued invest-
ment in diagnostic and sequencing capacity for
these pathogens could serve the public health
of the continent well into the 21st century.

Methods and methods
Ethics statement

This project relied on sequence data and as-
sociated metadata that are publicly shared by
the GISAID data repository and adhere to the
terms and conditions laid out by GISAID (16).
The African samples processed in this study
were obtained anonymously from material ex-
ceeding the routine diagnosis of SARS-CoV-2
in African public and private health labora-
tories. Individual institutional review board
references or material transfer agreements
(MTAs) for countries are as follows: Angola
(MTA - CON8260); Botswana–genomic surveil-
lance in Botswana was approved by the Health
Research and Development Committee (pro-
tocol HPDME 13/18/1); Egypt–surveillance in
Egypt was approved by the Research Ethics
Committee of the National Research Centre
(Egypt) (protocol number 14 155, dated 22March
2020); Kenya–samples were collected under
the Ministry of Health protocols as part of the
national COVID-19 public health response, and
the whole-genome sequencing study protocol
was reviewed and approved by the Scientific
andEthics ReviewCommittee (SERU) at Kenya
Medical Research Institute (KEMRI), Nairobi,

Kenya (SERU protocol #4035); Nigeria (NHREC/
01/01/2007),Mali–study of the sequence of SARS-
CoV-2 isolates in Mali, Letter of Ethical Commit-
tee (N0-2020 /201/CE/FMPOS/FAPHof 09/17/
2020); Mozambique (MTA - CON7800); Malawi
(MTA -CON8265); SouthAfrica–theuse of South
African samples for sequencing and genomic
surveillance was approved by University of
KwaZulu-Natal Biomedical Research Ethics
Committee (ref. BREC/00001510/2020), theUni-
versity of theWitwatersrandHumanResearch
Ethics Committee (HREC) (ref. M180832), Stel-
lenbosch University HREC (ref. N20/04/008_
COVID-19), the University of the Free State Re-
search Ethics Committee (ref. UFS-HSD2020/
1860/2710), and the University of Cape Town
HREC (ref. 383/2020); Tunisia–for sequences
derived from sampling in Tunisia, all patients
provided their informed consent to use their
samples for sequencing of the viral genomes,
and the ethical agreement was provided to the
research project ADAGE (PRFCOVID19GP2) by
theCommittee of Protection of Persons (Tunisian
Ministry of Health) under the reference CPP
SUDN 0265/2020; Uganda–the use of samples
and sequences from Uganda was approved by
the Uganda Virus Research Institute, Research
and Ethics Committee UVRI-REC Federalwide
Assurance (FWA) no. 00001354, study refer-
ence GC/127/20/04/771, and by the Uganda
National Council for Science and Technology,
reference number HS936ES; and Zimbabwe
(MTA - CON8271).

Epidemiological and genomic data dynamics

We analyzed trends in daily numbers of cases
of SARS-CoV-2 in Africa up to 31 March 2022
frompublicly released data provided by the Our
World in Data repository for the continent of
Africa (https://github.com/owid/covid-19-data/
tree/master/public/data) as a whole and for in-
dividual countries (2). To provide a comparable
view of epidemiological dynamics over time in
various countries, the variable under primary
consideration for Fig. 1 was “new cases per
million (smoothed).” To calculate the genomic
sampling proportion and frequency for each
country for Fig. 2, the total number of recorded
cases as of 31 March 2022 was considered, as
well as the total length of time for which each
country had recorded cases of SARS-CoV-2.
Genomic metadata was downloaded for all

African entries on GISAID for the same time
period (date of access: 31 March 2022). From
this, information extracted from all entries for
this study included the date of sampling, coun-
try of sampling, viral lineage and clade, orig-
inating laboratory, sequencing laboratory, and
date of submission to the GISAID database.
The geographical locations of the originating
and sequencing laboratories were manually
curated. Sequences originating and sequenced
in the same country were defined as locally se-
quenced, irrespective of specific laboratory or

finer location. Sequences originating in one
African country and sequenced in another
were defined as sequenced within regional
sequencing networks. Sequences sequenced in
a location not within Africa were labeled as
sequenced outside Africa. Sequencing turn-
around time was defined as the number of
days that had elapsed from specimen collection
to sequence submission to GISAID. Sequencing
technology information for all African en-
tries was also downloaded from GISAID on
31 March 2022.

Primer choice and sequencing outcomes

All SARS-CoV-2 genomes from African coun-
tries were retrieved from GISAID (16) for sub-
missiondates from1December 2019 to 31March
2022, yielding 100,470 entries. Associated meta-
data for the entries were also retrieved, includ-
ing collection date, submission date, country,
viral strain, and sequencing technology. Data
on the primers used for the sequencing were
requested from investigators and yielded primer
data for 13,973 of the entries (~13%). The total
N (bases with low sequence depth) per ge-
nome were counted, the results of which were
then used for genome quality analysis and vi-
sualization. Gap locations in the genomes were
mapped and visualized with respect to the
original Wuhan strain (64).

Phylogenetic investigation

All African sequences on the GISAID sequence
database (16) were downloaded on 31 March
2022 (n = 100,470). Of these, Alpha accounted
for 3851 sequences, Beta accounted for 14,548
sequences,Delta accounted for 35,027 sequences,
Omicron accounted for 21,708 sequences, and
25,336 sequences were classified as non-VOCs.
Before any phylogenetic inference, we performed
some quality assessment on the sequences to
exclude incomplete or problematic sequences
as well as sequences lacking complete meta-
data. Briefly, all African sequences were passed
through the NextClade analysis pipeline (65)
to identify and exclude (i) sequences missing
>10%of the SARS-CoV-2 genome, (ii) sequences
that deviate by>70nucleotides from theWuhan
reference strain, (iii) sequences with >10 ambig-
uous bases, (iv) clustered mutations, and (v)
sequences flagged with private mutations by
NextClade. Additionally, Omicron variants were
screened for traces of viral recombination
with RDP5.23 (66) using default settings and a
p value of ≤0.05 as evidence of recombination.
A large number of sequences were removed
(n= 57,421), with incomplete sequences (<90%
genome coverage) being the biggest contrib-
utor. This produced a final African dataset of
43,049 high-quality African sequences. Because
of the sheer size of the dataset, we opted to per-
form independent phylogenetic inferences
on the main VOCs (Alpha, Beta, Delta, and
OmicronBA.1 andBA.2) that have spread on the
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African continent, aswell as a separate inference
for all non-VOC SARS-CoV-2 sequences.
To evaluate the spread of the virus on the

African continent, we aligned the African data-
sets against a large number of globally repre-
sentative sequences from around the world.
Because of the oversampling of some variants
or lineages, we performed a random down sam-
pling while retaining the oldest two known
variants from each country. Reference sequences
were respectively aligned with their African
counterparts independently with NextAlign
(65). Each of the alignments was then used to
infermaximum likelihood (ML) tree topologies
in FastTree v 2.0 (67) using the general time
reversible model of nucleotide substitution
and a total of 100 bootstrap replicates (68). The
resulting ML tree topologies were first inspected
in TempEst (69) to identify any sequences that
deviate more than 0.0001 from the residual
mean. After the removal of potential outliers
in R with the ape package (70), the resulting
ML trees were then transformed into time-
calibrated phylogenies in TreeTime (71) by ap-
plying a rate of 8 × 10–4 substitutions per site per
year (72) to transform the branches into units
of calendar time. Time-calibrated trees were
then visualized, along with associatedmetadata,
in R using ggtree (73) and other packages.
We performed a basic viral dispersal analy-

sis for each of the VOCs (excluding Gamma) as
well as for the non-VOC dataset. Briefly, a mi-
gration model was fitted to each of the time-
calibrated tree topologies in TreeTime, mapping
the country location of sampled sequences to
the external tips of the trees. The mugration
model of TreeTime also infers the most likely
location for internal nodes in the trees. Using
a custom python script, we could then count
the number of state changes by iterating over
each phylogeny from the root to the external
tips. We count state changes when an internal
node transitions fromone country to a different
country in the resulting child node or tip(s). The
timing of transition events is then recorded,
which serves as the estimated import or export
event. To infer some confidence around these
estimates, we performed 10 replicates for each of
the datasets by random selection from the 100
bootstrap trees. Because of the high uncertainty
in the inferred locations for deep internal nodes
in the trees, we truncated state changes to the
earliest date of sampling in eachdataset. All data
analytics were performed using custom python
and R scripts, and the results were visualized
using the ggplot libraries (74). Such phylogeo-
graphic methods are always subject to uneven
sampling through time (i.e., over the course of
the pandemic) and through space (by sam-
pling location). To address this, we have per-
formed a case-sensitive analysis to investigate
the effects of oversampling African locations
on the inferred number of viral introductions.
Furthermore, in a previous analysis (15), we

performed a sensitivity analysis to address some
of these issues and found no substantial var-
iations in estimates.

Case-sensitive phylogeographic inference

Toaddress thepotential oversamplingofAfrican
sequences relative to global reference in the
above-mentioned analyses, we performed an-
other phylogeographic inference on subsamples
based on global case counts to try to eliminate
oversampling bias in our inference. To this
end, we considered all high-quality sequences
for each of the VOCs (Alpha, Beta, Delta, and
Omicron BA.1 and BA.2) globally over the same
sampling period (until 31March 2022). We used
subsampler (https://github.com/andersonbrito/
subsampler) to generate subsamples for each
variant based on globally reported cases. In
short, subsampler uses a case-count matrix
of daily cases, along with the fasta sequences
and GISAID associated metadata, to sample
a user-defined number of sequences. For each
VOC and for BA.1 and BA.2, we performed
10 samplings using different number seeds to
sample datasets of ~20,000. Once again, sam-
pled sequences were screened for viral recom-
bination as described above and sequences
with signs of recombinationwere removed. Sub-
sampler has the added advantage that it dis-
regards poor quality sequences (e.g., <90%
coverage) and sequences with missing meta-
data (e.g., exact date of sampling). Each data-
set was then subjected to the same analytical
pipeline as mentioned above to infer the viral
transitions between Africa and the rest of
the world.

Regional and country-specific NextStrain builds

To investigate more-granular changes in line-
age dynamics within a specific country or re-
gion in Africa, we used theNextStrain pipeline
(https://github.com/nextstrain/ncov) to gen-
erate the regional and country-specific builds
for African countries (75). First, all sequence
data and metadata were retrieved from the
GISAID sequence database and filtered for
Africa based on the “region” tab for inclusion
in regional and country-specific African builds.
For country-specific builds, ~4000 sequences
from a given country were randomly selected
and analyzed against ~1000 randomly selected
sequences from the Africa “nextregions” records
that do notmatch the focal country of interest.
For regional (e.g., West Africa) builds, ~4000
sequences from the focal region were selected
at random and analyzed against ~1000 ran-
domly selected sequences from the Africa
“nextregions” records that do not match the
focal region of interest. The methodological
pipeline for NextStrain is well documented
and performs all analyses within oneworkflow,
including filtering of sequences, alignment,
tree inference, molecular clock, and ancestral-
state reconstruction. For more information,

please visit https://docs.nextstrain.org/en/
latest/index.html.
All regional and country-specific builds are

regularly updated to keep track of the evolv-
ing pandemic on the continent. All builds are
publicly available under the links provided
in tables S1 and S2 aswell as on theNextStrain
web page (https://nextstrain.org/sars-cov-2/
#datasets).
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